This project showcases how AI models can be used to generate synthetic data, which can be useful for augmenting datasets, improving machine learning model performance, and overcoming data scarcity issues.
To set up the Synthetic Data Generation system on your local machine, follow these steps:
git clone https://github.com/username/synthetic-data-generator.git
cd synthetic-data-generator
python3 -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
To generate synthetic data, run the main script and specify the data type and parameters:
python generate_synthetic_data.py --type "numerical" --rows 1000
Customize the parameters to generate data that fits your specific needs.
The generated data will be outputted in a format that matches the desired specifications, providing a valuable resource for testing, model training, and data analysis without exposing sensitive information.